

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 547-550

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Growth and some properties of Sc₂AlB₆ crystal obtained from the solution in aluminum melt

Shigeru Okada,^{a,*} Kunio Kudou,^b Takaho Tanaka,^c Toetsu Shishido,^d Vladimir N. Gurin,^e and Torsten Lundström^f

^a Faculty of Engineering, Kokushikan University, 4-28-1 Setagaya, Setagaya, Tokyo 154-8515, Japan

^b Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa, Yokohama 221-8686, Japan

^cNational Institute for Research in Inorganic Materials, Tsukuba, Ibaraki 305-0044, Japan

^d Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-0812, Japan

^eA.F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg 194021, Russia

^f The Ångström Laboratory, Inorganic Chemistry, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden

Received 30 September 2002; received in revised form 20 December 2002; accepted 17 January 2003

Abstract

Crystals of Sc₂AlB₆ were grown using scandium oxide and elemental boron as starting materials in a self-component aluminum solution under an argon atmosphere. The growth conditions for obtaining single crystals of relatively large size were investigated. Sc₂AlB₆ single crystals were obtained in the form of prisms extending in the *b*-axis direction. The largest Sc₂AlB₆ crystals prepared had maximum dimensions of about $0.4 \times 0.4 \times 4.2 \text{ mm}^3$. The values of the Vickers microhardness and the electrical resistivity of Sc₂AlB₆ crystals are 12.7 ± 0.8 GPa and $43 \pm 8 \mu\Omega$ cm, respectively. The oxidation of Sc₂AlB₆ crystals starts at about 773° C, and the weight gain after TG determination is 12.9 mass% at 1200° C. The oxidation products of Sc₂AlB₆ crystals could not determined. © 2003 Published by Elsevier Inc.

Keywords: Sc2AlB₆; Solution in aluminum melt; Vickers microhardness; Electrical resistivity; Oxidation resistance

1. Introduction

In most of the known ternary rare earth borides, three types of ternary structures have been reported, namely the YCrB₄-type (S.G.: *Pbam*), Y₂ReB₆-type (S.G.: *Pbam*) and *REAlB*₁₄-type (*RE* = rare earth element) (S.G.: *Imma*) [1–3]. The Lu₂AlB₆ phase crystallizing in the Y₂ReB₆-type structure displays relatively high thermal stability and high hardness [4]. The present authors are interested in chemical and physical properties of Y₂ReB₆-type compounds of ternary rare earth borides. However, the data available on the properties for compounds *iso*-structural to the Y₂ReB₆-type are very scarce. In our previous work, we succeeded to synthesize a new ternary boride, Sc₂AlB₆. The crystals were obtained from a self-component aluminum solution using scandium metal and boron elements as starting materials. The crystal structure was determined by single-crystal X-ray diffractometry [5]. As shown in Fig. 1, the Sc_2AlB_6 structure is built up by a two-dimensional boron network (composed of 5, 6 and 7 membered rings) sandwiched between metal layers. These boron atoms reside in the interstitial sites of trigonal prisms, formed by the Sc and Al atoms. However, we did not carry out any measurements of chemical and physical properties of the Sc_2AlB_6 crystals obtained.

In the present work, we report the experimental conditions for growing Sc_2AlB_6 crystals of relatively large size, using scandium oxide and elemental boron in a self-component aluminum solution under an argon atmosphere. In addition, measurements of Vickers microhardness and electrical resistivity for the as-grown Sc_2AlB_6 crystals were carried out, and oxidation resistance was investigated at high temperature in air.

^{*}Corresponding author. Fax: +81-3-5481-3292.

E-mail address: sokada@kokushikan.ac.jp, shigeruokada@yahoo. com (S. Okada).

Fig. 1. Crystal structure of Sc₂AlB₆: three-dimensional view. Large gray, large open and small gray circles represent Sc, Al and B atoms, respectively.

2. Experimental

The Sc₂AlB₆ crystals were prepared from scandium oxide powder (99.9% purity), amorphous boron (99.9% purity) and aluminum chips (99.99% purity). Sc₂O₃ and B powders were weighed in with atomic ratios n = B/Sc = 5-25 (Table 1) according to the reaction

$$\operatorname{Sc}_2\operatorname{O}_3 + (2n+3)\operatorname{B} \to 2\operatorname{Sc}\operatorname{B}_n + 3\operatorname{BO}.$$
 (1)

Al metal was added to each mixture at a mass ratio of 1:15. The mixture of starting materials was placed in a high-purity alumina (99.9% purity) crucible and heated under an argon gas. The temperature of the furnace was raised at a rate of 300° Ch⁻¹ up to 1500° C and held for 10 h at that temperature, and then slowly cooled down at a rare of 50° Ch⁻¹ to 1000° C. Subsequently the furnace was rapidly cooled down to room temperature. The crystals were removed from the solidified melt by dissolving the matrix in about 6 mol dm⁻³ hydrochloric acid.

Relatively large single crystals of Sc₂AlB₆ were selected under a stereomicroscope for chemical analyses and measurements Vickers microhardness, electrical resistivity and oxidation resistance. The morphological properties and impurities of the crystals were investigated by a scanning electron microscope (SEM) (JEOL, JED-2140) and an energy dispersive X-ray detector (EDX)(Horiba, EMAX-2770). The chemical composition was determined by an electron probe microanalyser (EPMA) (JEOL, JXA8600MX) and an inductively coupled plasma emission analyser (ICP) (Shimadzu, ICP-50). The crystalline phases were determined using powder X-ray diffraction data (XRD) (Rigaku, R-2000) with monochromatic CuK α radiation. The unit-cell parameters of Sc₂AlB₆ were determined using a Guinier-Hägg focusing X-ray powder diffraction camera [6] with monochromatic $CuK\alpha_1$ radiation and

Table 1							
Synthesis	conditions	of Sc ₂ All	B ₆ crystals	from	solution	in	aluminum
melt							

Run no.	Composition of the starting material (atomic ratio Sc:B)	Phases identified
1	1:5	ScB ₂ , α -Al ₂ O ₃
2	1:6	ScB ₂ , α -Al ₂ O ₃
3	1:8	ScB ₂ , α -Al ₂ O ₃
4	1:10	ScB ₂ , α -Al ₂ O ₃
5	1:12	ScB ₂ , α -Al ₂ O ₃ , Sc ₂ AlB ₆
6	1:14	Sc_2AlB_6 , α - Al_2O_3
7	1:16	Sc_2AlB_6 , α - Al_2O_3
8	1:18	Sc_2AlB_6 , α - Al_2O_3
9	1:20	Sc_2AlB_6 , α - Al_2O_3 , α - AlB_{12}
10	1:22	Sc_2AlB_6 , α -Al ₂ O ₃ , α -AlB ₁₂
11	1:24	α -AlB ₁₂ , α -Al ₂ O ₃
12	1:25	α -AlB ₁₂ , α -Al ₂ O ₃

Al metal was added to each mixture at a mass ratio of 1:15. The starting materials were soaked at 1500°C for 10 h.

silicon as internal calibration standard. The density of the crystals was measured using a pycnometer with distilled water at room temperature. The X-ray density was determined using the result of the measurements of the unit-cell parameters.

The microhardness of the as-grown Sc_2AlB_6 crystals was measured using a Vickers diamond indenter [7,8] at room temperature. A load of 0.98 N was applied for 15 s at about 7 positions on a well-developed (010) face of the crystal. The electrical resistivity value of as-grown Sc_2AlB_6 crystals was measured by a direct-current fourprobe technique [9] at room temperature in air. The values of hardness and electrical resistivity were averaged and the experimental error was estimated. The oxidation resistance of Sc_2AlB_6 was studied by TG-DTA [7,10] analyses, when the samples were heated in air at a rate of $10^{\circ}Cmin^{-1}$ up to $1200^{\circ}C$.

3. Results and discussion

3.1. Growth of Sc_2AlB_6 crystals

The results of the phase analysis are listed in Table 1. As seen from Table 1, Sc_2AlB_6 , ScB_2 , α -AlB₁₂ and α -Al₂O₃ were formed. The variation of the atomic ratio of the starting materials gave different compounds, and with increased boron concentration, more boron-rich aluminum borides were obtained. The Sc_2AlB_6 phase became strongly dominating in the range of atomic ratios B/Sc = 14-18 (Run no. 6-8). It is believed that the major part of α -Al₂O₃ came from minute fragments of the alumina crucible sticking to the crystals and from an Al₂O₃ mortar, which was used to pulverize the crystals. Sc₂AlB₆ single crystals, having silver color and metallic lustre, were generally obtained in the form of prisms extending in the *b*-axis direction (Fig. 2). The largest Sc₂AlB₆ crystals prepared had the maximum dimensions of about $0.4 \times 0.4 \times 4.2 \text{ mm}^3$. The basic crystal data, unit-cell parameters, density and chemical composition of as-grown Sc₂AlB₆ are listed in Table 2. The unit-cell parameters of Sc₂AlB₆ (Table 2) are smaller than those of Yb₂AlB₆ [11] and Lu₂AlB₆ [4], with the following values for Yb₂AlB₆ a = 0.9127(5) nm, b = $1.146(1) \text{ nm}, c = 0.3584(4) \text{ nm}, V = 374.9(1) \times 10^{-3} \text{ nm}^{3};$ and for $Lu_2AlB_6 a = 0.8987(1) nm$, b = 1.1334(1) nm, $c = 0.3633(1) \text{ nm}, V = 370.1(1) \times 10^{-3} \text{ nm}^3, \text{ respec-}$ tively. The values of the unit-cell volume V decreases with decreasing atomic size of RE in RE_2AlB_6 (RE = Sc, Yb, Lu). The measured density is close to the X-ray density. The impurity content of Sc₂AlB₆ crystals was not analyzed chemically. However, no evidence has been obtained for the presence of an oxygen-containing phase in the crystals, as concluded from EDX and EPMA of as-grown crystals.

Fig. 2. SEM photograph of a Sc₂AlB₆ single crystal (Run no. 6).

Table 2 Crystal data and chemical analysis data of Sc₂AlB₆ crystal

Formula unit	Sc ₂ AlB ₆
Run no.	6
Crystal	Prismatic shape
Crystal system	Orthorhombic
Space group	<i>Pbam</i> (No. 55)
a (nm)	0.8936(2)
<i>b</i> (nm)	1.1228(3)
<i>c</i> (nm)	0.3432(1)
$V(nm^3)$	$344.3(1) \times 10^{-3}$
Z	4
$D_x ({\rm g cm^{-3}})$	3.305
$D_m (\mathrm{g}\mathrm{cm}^{-3})$	3.28(2)
Sc (mass%)	48.7
Al (mass%)	12.2
B (mass%)	39.3
In total	100.2
Chemical composition	$Sc_{1.8}Al_{0.7}B_6$

3.2. Properties

The Vickers microhardness of as-grown Sc_2AlB_6 crystals was measured in several directions on the (010) faces. The hardness value is listed in Table 3 together with previously published data for Lu₂AlB₆ [4]. The values measured on (010) faces of Sc_2AlB_6 crystals are slightly lower than that observed of 18.9 ± 0.7 GPa for Lu₂AlB₆ in the literature. It seems to be that the microhardness changes having metal elements content in the boron networks built up by five-, six-, and seven-membered rings. Considering the difference for metal elements in the structure, especially between Sc_2AlB_6 and Lu₂AlB₆, the difference in the microhardness of their compounds is noteworthy.

The electrical resistivity of as-grown crystals was measured parallel to the *b*-axis for Sc_2AlB_6 . The electrical resistivity values are listed in Table 3 together with previously published data for Lu₂AlB₆ [4]. The electrical resistivity values of Sc_2AlB_6 crystals were found to be closely similar to the values of Lu₂AlB₆ crystals.

The oxidation process of Sc_2AlB_6 crystals was studied at temperature below 1200°C by TG-DTA analyses. The results are presented together with previously published data for Lu₂AlB₆ [4] in Fig. 3. The oxidation of Sc_2AlB_6 starts at about 773°C, and the oxidation reaction of Lu₂AlB₆ began to proceed at about 1030°C. Sc_2AlB_6 shows low oxidation resistance, while Lu₂AlB₆ shows relatively high oxidation resistance. The resistance towards oxidation seems to be related to thermodynamic stability. The weight gain of Sc_2AlB_6 after TG determination is 12.9 mass% at 1200°C. Sc_2AlB_6 crystal did not exhibit any endothermic or exothermic peaks in the DTA curve. The final oxidation products of the crystal were not detected from XRD, probably due to insufficient amount of the oxidation product.

Table 3 Vickers microhardness and electrical resistivity of RE_2AlB_6 (RE = Sc, Lu) crystals

Compound	Hardness (GPa)	Electrical resistivity ($\mu\Omega$ cm)	Reference
Sc ₂ AlB ₆ Lu ₂ AlB ₆	$\begin{array}{c} 12.7 \pm 0.8 \\ 18.9 \pm 0.7 \end{array}$	$\begin{array}{c} 43\pm8\\ 31\pm3\end{array}$	This work [4]

Fig. 3. TG-DTA curves of Sc₂AlB₆ and Lu₂AlB₆ crystals heated in air.

4. Conclusion

The single crystals of Sc_2AlB_6 were grown using scandium oxide and element boron as starting materials in a self-component aluminum solution under an argon atmosphere. Sc_2AlB_6 single crystals, having silver color and metallic lustre, were generally obtained in the form of prisms extending in the *b*-axis direction. The largest Sc_2AlB_6 crystals prepared had the maximum dimensions of about $0.4 \times 0.4 \times 4.2$ mm³. Sc_2AlB_6 belongs to the orthorhombic system and crystallizes in the Y₂ReB₆type structure: space group *Pbam* (No. 55), a = 0.8936(2) nm, b = 1.1228(3) nm, c = 0.3432(1) nm, $V = 344.3(1) \times 10^{-3}$ nm³. The present study of Sc₂AlB₆ single crystals is the first physical and chemical properties study. The values of the Vickers microhardness and electrical resistivity of Sc₂AlB₆ crystals are 12.7 ± 0.8 GPa and $43 \pm 8 \mu\Omega$ cm, respectively. The oxidation of Sc₂AlB₆ crystals starts at about 773°C. Weight gain of the Sc₂AlB₆ after TG determination are 12.9 mass%. The oxidation products of Sc₂AlB₆ crystals could not determined.

Acknowledgments

The authors would like to thank Dr. K. Iizumi, Miss T. Tsuchiya and Miss Y. Igumi of Tokyo Institute of Polytechnics for their help in the experiments, and Prof. Y.B. Andersson and Dr. L.-E. Tergenius of Uppsala University for his help in the discussion part.

References

- V.I. Matkovich (Ed.), Boron and Refractory Borides, Springer, New York, 1977, pp. 453–462.
- [2] M.M. Korsukova, V.N. Gurin, Y. Yu, L.-E. Tergenius, T. Lundström, J. Alloys Compd. 190 (1993) 185–187.
- [3] Yu.B. Kuz'ma, S.I. Svarichevskaya, Kristallografiya 17 (3) (1972) 658–663.
- [4] S. Okada, Y. Yu, T. Lundström, K. Kudou, T. Tanaka, Jpn. J. Appl. Phys. 35 (1996) 4718–4723.
- [5] S. Okada, T. Tanaka, A. Leithe-Jasper, Y. Michiue, V.N. Gurin, J. Solid State Chem. 154 (2000) 49–53.
- [6] S. Okada, Y. Yu, K. Kudou, T. Shishido, T. Tanaka, I. Higashi, T. Lundström, J. Solid State Chem. 154 (2000) 45–48.
- [7] S. Okada, T. Shishido, M. Ogawa, F. Matsukawa, Y. Ishizawa, K. Nakajima, T. Fukuda, T. Lundström, J. Crystal Growth 229 (2001) 532–536.
- [8] T. Shishido, K. Kudou, S. Okada, J. Ye, A. Yoshikawa, T. Sasaki, M. Oku, H. Horiuchi, I. Higashi, S. Kohiki, Y. Kawazoe, K. Nakajima, Jpn. J. Appl. Phys. 40 (2001) 6037–6038.
- [9] S. Okada, K. Kudou, Y. Yu, T. Lundström, Jpn. J. Appl. Phys. 33 (1994) 2663–2666.
- [10] S. Okada, T. Shishido, Y. Ishizawa, M. Ogawa, K. Kudou, T. Fukuda, T. Lundström, J. Alloys Compd. 317–318 (2001) 315–319.
- [11] S.I. Mikhalenko, Yu.B. Kuz'ma, M.M. Korsukova, V.N. Gurin, Izv. Akad. Nauk SSSR Neorg. Mater. 16 (1980) 1941–1948.